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A new class of large-eddy simulation (LES) models (optimal LES) was previously
introduced by the authors. These models are based on multi-point statistical informa-
tion, which here is provided by direct numerical simulation (DNS). In this paper, the
performance of these models in LES of forced isotropic turbulence is investigated. It
is found that both linear and quadratic optimal models yield good simulation results,
with an excellent match between the LES and filtered DNS for spectra, and low-order
structure functions.

Optimal models were then used as a vehicle to investigate the effects of filter shape
and the locality of model dependence on LES performance. Results indicate that a
Fourier cutoff filter yields more accurate simulations than graded cutoff filters, leaving
no motivation to use graded filters in spectral simulations. It was also found that
optimal models formulated to depend on local information performed nearly as well
as global models. This is important because in practical LES simulations in which
spectral methods are not applicable, global model dependence would be prohibitively
expensive.

1. Introduction
Large-eddy simulation of turbulence (LES) is a simulation technique whereby only

the largest scales are simulated and a model is used to account for the missing small-
scales (see Rogallo & Moin 1984). Such a simulation is motivated by the recognition
that the large scales of turbulence often dominate heat transfer, mixing and other
quantities of engineering interest, whereas the small scales of turbulence are important
in these cases only because they affect the large scales. There has been optimism that
LES can be used as a robust predictive tool, partly because the small scales of
turbulence are believed to be more isotropic and more universal than the large scales,
and partly because LES has already been successful in many flows. For reviews of
LES see Rogallo & Moin (1984); Lesieur & Métais (1996); Meneveau & Katz (2000).

To formulate an LES, we must first define the large scales to be simulated, which is
accomplished by way of a spatial low-pass filter. The filtered velocity ũi(x) is generally
defined:

ũi(x) =

∫
g(x, x′)ui(x ′) dx ′, (1.1)

† Present address: Sony Computer Entertainment of America, 10075 Barnes Canyon Rd, San
Diego, CA 92121, USA.
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where g is the filter kernel. When g depends only on x ′ − x it is said to be homogeneous
and in this case, the filter operator commutes with spatial differentiation. Applying a
homogeneous filter to the Navier–Stokes equations yields

∂ũi

∂t
= −∂ ˜̃uiũj

∂xj

− ∂p̃

∂xi

+
1

Re

∂2ũi

∂xj∂xj

+ Mi, (1.2)

where Mi = ∂τij /∂xj is the subgrid model term, and τij = ˜̃uiũj − ũiuj is the subgrid
stress. It remains to determine a model for the subgrid force Mi , or more commonly
the subgrid stress τij .

A large number of subgrid stress models have been proposed in the literature (e.g.
Smagorinsky 1963; Bardina, Ferziger & Reynolds 1980; Métais & Lesieur 1992; Liu,
Meneveau & Katz 1994). Perhaps the most common is the dynamic Smagorinsky
model first proposed by Germano et al. (1991), and subsequently refined by several
authors (Lilly 1992; Ghosal et al. 1995; Meneveau, Lund & Cabot 1996). While the
dynamic Smagorinsky model as well as others have been used successfully to simulate
a variety of flows, there continue to be unresolved issues regarding LES formulations
and shortcomings in LES models in important flows (e.g. wall-bounded flows).

To address some of these shortcomings, Langford & Moser (1999) proposed a class
of models (optimal LES models) based on formal optimization of the subgrid model
term, similar to the previous proposal by Adrian (1977, 1990). Such models were shown
to approximate formally the ideal subgrid model, a well-defined, though impractical
to compute, LES model that guarantees correct large-scale statistics while minimiz-
ing the mean-square difference between the exact and modelled subgrid force term
(Langford & Moser 1999; Pope 2000). In this paper, the performance of optimal
LES models in forced isotropic turbulence is evaluated. These models are formulated
using statistical data from a direct numerical simulation (DNS) of forced isotropic
turbulence (Langford & Moser 1999). The models are also used as a platform to
investigate two other important issues in LES formulation: the effect of filter definition
on the accuracy of LES models and simulations, and the importance of non-local
information in the formulation of LES models. In the following subsections, the
optimal LES approach is briefly reviewed, and the context of the filter and non-
locality issues are described.

1.1. Filtering, discretization and LES

Filtering plays a pivotal role in LES, in that it defines precisely the large scales to
be simulated. There is, however, an interaction between filtering and discretization
which is of critical importance to the optimal LES formulation. There are, in fact,
two distinct approaches to filtering and discretization, which are described here.

(a) Continuous filtering. In continuous filtering, a filter (e.g. a Gaussian or top-hat)
as defined in (1.1) is used, resulting in the filtered Navier–Stokes equations, (1.2). A
model for subfilter stress is then introduced and the resulting PDE is discretized in
space and solved numerically. This is the more common formulation.

(b) Discrete filtering. In discrete filtering, a filter is defined as a (linear) mapping
from the infinite dimensional space in which Navier–Stokes solutions evolve to a
finite dimensional space, which can be represented on a computer without further spa-
tial discretization. In essence, discretization or truncation has been included in the filter
definition. Examples of such filters include the Fourier cutoff filter (in a finite periodic
domain), and finite volume filters (Zandonade, Langford & Moser 2004). (Note that
the filter as defined in (1.1) can be generalized to include such a discretization, if g can
be a distribution.) In this case, the modelling is done in the resulting dynamical system,
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rather than a partial differential equation as with continuous filters. This approach is
used for cutoff filtered LES, MILES (Boris et al. 1992) and in optimal LES.

There are advantages and disadvantages to each of these approaches. An advantage
of the continuous approach is that we can use standard numerical techniques and
control numerical errors in the usual way through grid refinement. In short, the
numerical solution should converge to the solution of the LES PDEs. The dis-
advantage is that this is expensive, it requires resolution that is much finer than the
filter width, so that it is rarely done in practice. In the discrete filtering approach,
we cannot even consider convergence of the spatial numerical discretization, because
there is none. There are only modelling errors. This is an advantage because it can
lead to cheaper LES, and a disadvantage because we cannot use the usual numerical
convergence as a quality control tool.

If we ask what is the best possible LES model for a particular problem, as we do
in optimal LES, then the discrete filtering approach is compelling. The reason is that
in most cases the continuous filter is invertible or nearly so. For example, a Gaussian
filter is formally invertible (the Fourier transform of the kernel is real and positive).
A top-hat filter is nearly invertible in that the kernel Fourier transform is real and
non-zero for all but a countable set of wavenumbers. In either case, the filtered field
contains much information about the small-scale turbulence. The best possible model
would use all of this available information. In particular, for an invertible filter, the
best model would exactly reproduce the subgrid term. This would be equivalent to a
DNS with different dependent variables, and the numerical resolution requirements
would be the same as for a DNS. When we discretize the equations using resolution
appropriate for LES, the small-scale information in the filtered field is discarded.
Thus, in this approach, it is primarily the discretization that limits the small-scale
information that is available, and therefore limits the possible accuracy of the LES
model. Indeed, models that are based on the reconstruction of the small scales
(approximate inversion of the filter) require additional model or regularization terms
owing to the discretization (e.g. Stolz, Adams & Kleiser 2001; Domaradzki & Adams
2002). For this reason, we are led to include the discretization in the definition of the
filter, so it can be accounted for in the modelling.

Similar observations have been made by a number of authors (Zhou, Hossain &
Vahala 1989; Langford & Moser 1999; Domaradzki & Loh 1999; Winckelmans et al.
2001; Carati, Winckelmans & Jeanmart 2001), which have led some to distinguish
between the (invertible) ‘filter’ and the (non-invertible) numerical ‘truncation’, and to
account for both in the modelling process (Carati et al. 2001; Winckelmans et al.
2001). For optimal LES, this distinction is not necessary. It will suffice to consider
the filter to be a mapping to the discrete space in which the LES simulation will
be performed as described for the discrete filtering approach. There are then many
turbulent fields (formally infinite) that map to the same LES state, and the key to the
optimal LES formulation is to consider averages over these fields.

1.2. Ideal and optimal LES

Ideal large-eddy simulation is so called because it is the deterministic LES that yields
both the most accurate statistics and the most accurate large-scale dynamics, as
described below. The essential features of ideal LES are reviewed here, but for a more
thorough introduction see Langford & Moser (1999).

The evolution equation for ideal LES is

∂wi

∂t
(x) =

〈
∂̃ui

∂t
(x)

∣∣∣∣ũ(x ′) = w(x ′) for all x ′
〉

. (1.3)
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where ·̃ is the filter operator, wi is the LES velocity and ui is the real turbulent
velocity. Here and throughout, 〈·〉 represents the expected value, while 〈·|·〉 is the
conditional expectation. The ideal evolution (1.3) is founded on the observation that
in the absence of information about the small scales, there is a distribution of possible
large-scale evolutions associated with any given filtered field. The ideal LES evolution
expressed in (1.3) is simply the average over this distribution. A simulation with such
an evolution is guaranteed to match any one-time statistical quantity of the filtered
turbulence (Langford & Moser 1999; Pope 2000). Further, the mean-square difference

between ∂w/∂t and ∂̃u/∂t is minimized.
The LES equations are typically expressed as Navier–Stokes terms operating on the

filtered velocity field wi(x) plus a model term mi(x) as in (1.2). Ideal LES is achieved
when the model is chosen as a conditional average of the true subgrid force Mi(x):

mi(x) = 〈Mi(x)|ũ(x ′) = w(x ′) for all x ′〉. (1.4)

Note that the condition in (1.3) and (1.4) is a match of large-scale velocity over the en-
tire domain; hence, the information required to represent the ideal evolution equations,
or equivalently an ideal subgrid model, is prohibitive.

An optimal LES formulation is a formal approximation to ideal LES, using stochastic
estimation (Adrian et al. 1989). The quadratic estimate

mi(x) = Ai(x) +

∫
Bij (x, x′)wj (x ′) dx ′ +

∫
Cijk(x, x′)wj (x ′)wk(x ′) dx ′ (1.5)

has been previously studied because this form subsumes the terms in the incom-
pressible Navier–Stokes equations, so that modelling the subgrid force Mi and the
time derivative ∂wi/∂t are equivalent (this equivalence is always true for the ideal
formulation, but need not be for optimal forms). However, any set of terms can
be introduced, and provided that appropriate flow statistics are available (two-point
second-, third- and fourth-order correlations for the quadratic estimate shown), the
optimal estimation kernels Ai(x), Bij (x, x′) etc. can be found.

The estimation kernels are determined by minimizing the mean-square difference
between mi and Mi (Adrian et al. 1989), yielding the following system of integral
equations:

〈Mi(x)〉 = Ai(x) +

∫
Bij (x, x′)〈ũj (x ′)〉 dx ′ +

∫
Cijk(x, x′)〈ũj (x ′)ũk(x ′)〉 dx ′, (1.6)

〈ũl(x ′′)Mi(x)〉 = Ai(x)〈ũl(x ′′)〉 +

∫
Bij (x, x′)〈ũl(x ′′)ũj (x ′)〉 dx ′

+

∫
Cijk(x, x′)〈ũj (x ′)ũk(x ′)〉 dx ′, (1.7)

〈ũl(x ′′)ũm(x ′′)Mi(x)〉 = Ai(x)〈ũl(x ′′)ũm(x ′′)〉+
∫

Bij (x, x′)〈ũl(x ′′)ũm(x ′′)ũj (x ′)〉 dx ′

+

∫
Cijk(x, x′)〈ũl(x ′′)ũm(x ′′)ũj (x ′)ũk(x ′)〉 dx ′. (1.8)

To determine the estimation kernels, the two-point correlations of the filtered velocities
are required. In Langford & Moser (1999), and in this paper, these statistical correla-
tions are obtained from direct numerical simulations (DNS) of isotropic turbulence
at Reλ = 164.

To assess the quality of a particular estimate, the estimation difference di(x) =
Mi(x) − mi(x) is measured in a mean-square sense. We refer to this as estimation
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difference, to distinguish it from the error ei(x) = 〈Mi(x)|ũ = w〉 − mi(x), which is the
difference between the ideal model and the model under consideration. Error is not
an appropriate term for di , since it cannot be made arbitrarily small, though ei can.
Unfortunately, since we do not know the ideal model, we cannot determine the error
ei . However, if the estimation difference is larger in one case than another, it follows
that the error is also larger.

It was shown in Langford & Moser (1999) that for forced isotropic turbulence, the
magnitude of the estimation difference is nearly as large as the magnitude of the true
subgrid force, even with a model containing 46 terms chosen to subsume many
common subgrid models. This result suggests that the mean-square estimation
difference of the ideal model (the smallest possible) may be similarly large. If so,
then most of the subgrid force cannot be expressed as a deterministic function of the
filtered field, and is in this sense stochastic. This implies that there are limitations
on the small-scale effects that can be represented using deterministic models. For
example, in isotropic turbulence, the often cited energy backscatter, in which locally
(in space and time) energy is transferred from small scales to large scales, appears to
be a stochastic effect, not representable by deterministic models (Langford & Moser
1999). In this context, we might question the advisability of relying on deterministic
models, and consider adding a stochastic (random) component to the model. However,
the properties of the (deterministic) ideal model (Langford & Moser 1999) indicate
that this is not necessary for the prediction of large-scale single-time statistics.

In the previous optimal LES work, it was also found that the dominant term of
the estimate was the linear, purely dissipative, term. For isotropic turbulence, this is
equivalent to a wavenumber-dependent eddy viscosity. In Fourier space,

m̂i(k) = −k2ν̂T (k)ŵi(k), (1.9)

where ν̂T is the eddy viscosity, k is the wavevector, and k is the magnitude of k. The
optimal eddy-viscosity ν̂T has the well-known plateau–cusp behaviour predicted by
Kraichnan (1976).

It was shown in Langford & Moser (1999) that the simple linear estimate of
(1.9) is capable of exactly capturing the detailed wavenumber-by-wavenumber energy
transfer (on average) between the resolved and subgrid velocity scales as well as
all the subgrid terms in the evolution equation for the filtered two-point velocity
correlation, when measured in an a priori test.

As an example, the joint probability density of M̂ ‖(k) and ˆ̃u(k) and the conditional

average 〈M̂‖(k)| ˆ̃u(k)〉 are shown in figure 1 for 15 <k < 16 in isotropic turbulence with

a Fourier cutoff filter (kc =16). Here, M̂‖ is the component of the Fourier transformed

subgrid force Mi parallel to ˆ̃u, and ˆ̃u(k) is the magnitude of the filtered velocity Fourier
transform. The wavenumber shell 15 <k < 16 is selected for this example because the
subgrid force magnitude is largest in this range. The probability density contours and
conditional average confirm that the relationship between subgrid force magnitude
and large-scale velocity magnitude is approximately linear, though the variance is
large. It is thus expected that the optimal linear and higher-order models proposed
by Langford & Moser (1999) will produce accurate large-eddy simulation. Results of
several such simulations are examined in § 2 to test this supposition.

1.3. Filter choices

In homogeneous turbulence, the most natural choice for an LES filter is the Fourier
cutoff filter, in which the Fourier representation of the velocity is truncated at some
cutoff wavenumber kc. However, a variety of other choices are possible.
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Figure 1. Contours of probability density ρ(M̂‖, ˆ̃u), and the conditional average of M̂‖ given
ˆ̃u, where ˆ̃u =

√
ˆ̃ui

ˆ̃u∗
i , the spectral velocity magnitude, and M̂‖ = M̂i

ˆ̃ui/ ˆ̃u, the component of

subgrid force parallel to ˆ̃u. Data are shown for 15 <k < 16, and the Fourier filter cutoff is
kc = 16. This figure demonstrate the applicability of (1.9) to raw data.

It was observed by Clark, Ferziger & Reynolds (1979) that the subgrid stress asso-
ciated with a sharp Fourier-cutoff filter has different properties to the stress associated
with a Gaussian filter. For example, the characteristic plateau–cusp k-dependent eddy-
viscosity behaviour (Kraichnan 1976; Domaradzki et al. 1987; Lesieur & Rogallo
1989), is unique to the cutoff filter. Also, there has been criticism that the sharp
Fourier-cutoff filter is subject to Gibbs phenomenon, which may mask the deter-
ministic nature of the subgrid term (see Meneveau & Katz 2000; Leslie & Quarini
1979). Further, it was pointed out by Vreman, Geurts & Kuerten (1994) that Fourier
curoff filters do not produce subgrid stresses τij that are positive semi-definite as the
Reynolds stress tensor is. While the positivity property is certainly not required, it may
be convenient in modelling since it results in realizability constraints on the models.
In the current deterministic discrete LES context, however, it is not the positivity of
τij that is relevant, but rather its conditional average 〈τij |ũ〉. It is not currently known
whether the conditional averaged stress has the positivity property with Fourier cutoff
filters.

Two commonly proposed alternatives to the sharp cutoff filter are the Gaussian
filter and the top-hat filter. However, as discussed in § 1.1, these filters are invertible
or nearly so. For optimal LES, if such filters are used, the discretization must also be
included. Here, the Gaussian or top-hat filter is coupled with a Fourier cutoff filter.
This is what occurs implicitly when a Fourier spectral method is used.

The intrinsic limits of large-eddy simulation, which are realized by the ideal model,
arise from the relationship between the LES phase space and the phase space of
the real system. The filters in common use for LES are linear. As was shown in
Langford & Moser (1999), they can in general be decomposed into a linear projection
followed by an invertible linear transformation. For ideal LES, it is the projection that
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establishes what properties an LES will have; the invertible part of the transformation
is nothing more than a change of dependent variables.

While the use of a graded filter has no impact on ideal LES, if it is invertible, when
optimal LES formulations or any of the common practical ‘non-ideal’ models are used,
graded filters can have an impact. The reason is that the graded filter affects the com-
putation of the nonlinear and model terms. Because the functional form of the
optimal or other model is constrained, it is not generally possible for the effect of the
graded filter on the nonlinear terms to be exactly cancelled by the effect on the model.
In § 3, we investigate this impact, and in particular whether the change of variables
introduced by an invertible transformation is useful in improving LES models.

1.4. Model non-locality

The optimal LES formulations studied in Langford & Moser (1999) and § § 2–3 are
based on convolutions of estimation kernels with event data from the entire field. That
is, the model evaluated at any point is dependent on the LES velocity everywhere
in the spatial domain. In practical simulations, we typically do not use spectral
representations, like those used here, but rather finite-element, finite-volume, or finite-
difference representations. In these non-spectral representations, the use of global
event data leads to full matrices that are expensive to solve. To reduce this cost, we
would like to restrict the estimation to nearby event data. Furthermore, the global
nature of the optimal models distinguishes them from most currently used LES
models, though some models such as the dynamic procedure and scale similarity
models can be interpreted as using non-local information.

The question arises then as to how important non-local dependence is to subgrid
mode performance. This is investigated in § 4 by restricting the dependence of optimal
models to velocities at points close to the evaluation point of the model.

2. Optimal LES results
To evaluate the performance of the optimal models proposed by Langford & Moser

(1999), they were implemented in an LES code for forced isotropic turbulence using
Fourier spectral methods and a Fourier cutoff filter (the filter for which the models
were constructed). Simulations were then performed for the same case as the DNS
from which the correlations required in the optimal estimates were obtained, and the
results compared to those for the filtered DNS. The results of this comparison are
presented here.

Owing to homogeneity and isotropy, the linear and quadratic optimal estimation
models as given in (1.5) can be written as corrections to the viscous and advection
terms of the Navier–Stokes equations. So, when they are implemented in the simula-
tion, the equations to be solved, in Fourier-space, are

∂ŵi

∂t
= (L̂(k) − νk2)ŵi + (Q̂(k) − 1)Pilj (ŵlwj ) + f̃ (k), (2.1)

where f̃ (k) is the filtered large-scale forcing used in the direct numerical simulation,
L̂(k) and Q̂(k) are the Fourier transformed optimal estimation kernels, which can be
shown to be scalars due to isotropy, and

Pilj (k) = ikj (δil − kikl/k2) (2.2)

is just ikj times the divergence-free projection operator. The estimation kernels
are determined by solving the following system of algebraic equations at each



280 J. A. Langford and R. D. Moser

DNS LES

Reλ 164 164
Box size L 2π 2π
Grid size 2563 323

Cutoff wavenumber kc – 16
Forced wavenumbers k � 3 k � 3
kmaxη 1 0.13

Table 1. Simulation parameters for the LES and for the DNS used to generate statistics for
formulating the optimal models and to compare with LES results. All simulations were
performed using de-aliased spectral methods in a cubical box with periodic boundary condi-
tions. kmax is the maximum wavenumber in the simulation, η is the Kolmogorov length scale.
All LES use a Fourier cutoff filter, those in § 3 also use a graded filter.

wavenumber, which is just the Fourier transformed isotropic version of (1.6–1.8):

〈 ˆ̃ui(k)M̂i(k)〉 = L̂(k)〈 ˆ̃ui(k) ˆ̃ui(k)〉 + Q̂(k)〈 ˆ̃ui(k)Pilj ( ̂̃ulũj )(k)〉, (2.3)

〈Pilj ( ̂̃ulũj )(k)M̂i(k)〉 = L̂(k)〈Pilj ( ̂̃ulũj )(k) ˆ̃ui(k)〉
+ Q̂(k)〈Pilj ( ̂̃ulũj )(k)Pimn(̂̃umũn)(k)〉. (2.4)

In the simulation code that implements these models, the nonlinear terms are fully
dealiased and are time-advanced with a second-order Runge–Kutta scheme; linear
terms are time-advanced with an integrating factor. This is the time-advancement
treatment used in the DNS. Also implemented is the Smagorinsky model, and dynamic
Smagorinsky model.

Parameters used for the simulations are shown in table 1, along with those for the
DNS from which the optimal models were derived, and to which the comparisons
are made. The filter cutoff, kc =16, is the coarsest filter studied by Langford & Moser
(1999) and was chosen for this study because it is in the approximate inertial range of
the DNS. Simulations were performed for the optimal linear model (L16), the optimal
quadratic model (Q16), and several cases of the Smagorinsky model. One Smagorinsky
simulation was conducted with Cs = 0.819, an optimal value that a priori minimizes
r.m.s. error between the model and the subgrid force. A Smagorinsky model with
the usual value of the constant Cs = 0.17 was also used, along with the dynamic
Smagorinsky.

The three-dimensional energy spectra E(k) for the various LES models are shown in
figure 2. The optimal Smagorinsky model is grossly overly dissipative, thus illustrating
that the a priori error minimization problem is not guaranteed to produce the best
a posteriori results for arbitrary estimates; it is only guaranteed to produce the
best a posteriori results for the unconstrained optimization leading to the conditional
average in (1.4). With a Smagorinsky constant of Cs = 0.17, the results are much better,
though a discrepency is still apparant, as is the case for the dynamic Smagorinsky
model. The optimal linear and quadratic models, however, do an excellent job of
reproducing the correct energy spectrum. There is a slight discrepancy between the
DNS and optimal LES energy spectra in the middle part of the spectrum (k ≈ 4),
but it is possible that this discrepancy is due to the limited statistical sample of the
DNS. Also, it is apparent that there is a slight upward hook at the tail of E(k) for
L16, and that this hook is corrected somewhat in Q16. This hook is an indication
of a slightly under-dissipative model near the cutoff. However, both the L16 and
Q16 models are constructed to exactly reproduce the k-dependent energy transfer to
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velocity w from an optimal linear LES (L16).

the subgrid (the dissipation) when measured in an a priori test, again indicating the
difference between a posteriori and a priori performance, though in this case that
difference in performance is actually quite small.

The energy spectrum E(k) is a second-order statistical quantity, which can also be
represented in physical space as a second-order structure function. The structure func-
tion S2(r) = 〈|w(ξ + r) − w(ξ )|2〉 is shown in figure 3(a) for the optimal linear model
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(L16) and the filtered and unfiltered DNS. There is relatively good agreement between
the LES data and the filtered DNS data. The slight shift between the two curves arises
due to a discrepancy between the mean filtered kinetic energy of the two systems.
This is equal to the error in E(k) (see figure 2) integrated over k, so it is apparent that
the mid-spectrum discrepancies in E(k) lead to the shift in S2(r). Overall, the linear
model does a good job of predicting the correct second-order structure function.

In isotropic turbulence, two-point third-order statistics can be represented through
the third-order structure function S3(r) = 〈|w(ξ + r) − w(ξ )|3〉, which is shown in
figure 3(b) for the optimal linear model (L16), and the DNS. The agreement between
the LES data and the filtered DNS data is nearly perfect. We might argue that the
second-order statistics E(k) and S2(r) were likely to be correct, because second-order
DNS statistics were built into the subgrid model. This argument fails because the use
of second-order statistics in the model only guarantees an a priori match in statistics;
it does not guarantee that an actual simulation will generate the correct results.
However, not even an a priori claim can be made about the third-order statistics for
the optimal linear model. This provides further support that the optimal linear model
embodies many of the important characteristics of the ideal model. In particular, the
third-order structure function is important in the transfer of energy between different
wavenumbers.

Finally, note that the second- and third-order structure functions for the unfiltered
DNS data are also shown in figure 3. It is clear that these quantities are not equal to
the structure functions computed for the filtered DNS data. We may be tempted to
make an argument that ‘small scales are lost’ in filtering and so the filtered structure
functions should be affected only for the small separations. However, figure 3 shows
that this would be a mistake. Also, the differences in structure function shown are
specific to the sharp Fourier-cutoff filter. In general, details of the LES filter must be
known before we can sensibly compare LES results to real turbulence. More impor-
tantly, when LES is used as a predictive tool, we are not interested in the statistics
of the filtered fields, but rather the statistics of the real turbulence. Thus, in addition
to the usual LES subgrid stress models discussed here, models are required for the
subgrid contribution to whatever statistical quantities are of interest. While important,
this issue is not addressed here.

3. Effects of filter shape
The impact of filter shape on the performance of LES models is investigated here

by considering three different graded filters: a Gaussian filter, a top-hat filter and an
exponential filter. As in § 2, the analysis and simulations here are performed using
Fourier spectral representations. Thus, filtering and de-filtering operations are perfor-
med in wave space by multiplying or dividing (respectively) by the Fourier transformed
filter kernel. Further, the graded filters are combined with a cutoff filter (kc = 16), as
explained in § 1.1. Finally, note that the grading of the filter directly impacts the
model kernels, because they are determined from filtered statistical correlations, as
shown in (1.6) to (1.8).

3.1. Definitions of filter shapes

All the graded filters considered here are isotropic, and are defined by a filter kernel
g such that

w(x) =

∫
g(x − x ′)u(x ′) dx ′. (3.1)
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Let G(k) denote the Fourier transform of g(x). Since the filters are isotropic, G and
g are both functions of a single scalar argument. Considered are three classes of
filters, a top-hat filter, a Gaussian filter and an exponential filter. Both the top-hat
and Gaussian are commonly used in LES, the exponential filter is also considered
here to allow a more general class of filter shapes. The spherically symmetric top-hat
filter is defined as

g(ξ ) =

{
6/(π∆3), ξ < ∆/2,

0, otherwise,
(3.2)

G(k) =
12(2 sin(k∆/2) − k∆ cos(k∆/2))

k3∆3
.

The Gaussian filter is defined as

g(ξ ) =
(6/π)3/2

∆3
exp(−6ξ 2/∆2),

G(k) = exp(−k2∆2/24). (3.3)

The exponential filter is defined as

G(k) = exp(−k ln(γ )/kc), (3.4)

where γ corresponds to the amplification at the filter cutoff. This filter is similar to
the Gaussian, except that the dependence of the exponent on k is linear instead of
quadratic. Note that when γ > 1, the exponential filter actually amplifies the small
scales.

In the Gaussian and top-hat filters, ∆ is a characteristic filter width, and the filters
have all been normalized to be mean-preserving (G(0) = 1), in three dimensions.

Since the above filters will be combined with a Fourier-cutoff as the projection, it is
convenient to describe the filter parameter ∆ in terms of the Fourier-cutoff parameter
kc. Let h = π/kc, which is the Nyquist grid spacing for the the cutoff wavenumber kc.
Then, for the top-hat and Gaussian filters, the cases considered are ∆ =h, 2h and
3h. For the exponential filter, the cases considered are γ = 0.1, 0.5, 0.9, 1.1 and 2.0;
this filter is already parameterized in terms of kc. Filter kernels are shown in figure 4.
Note that in the case of ∆ =3h, G(k) for the top-hat filter is slightly negative for
k > 0.96kc.

3.2. Effect of filter shape on subgrid force magnitude

One of the more obvious effects of varying the filter shape is that the subgrid force
changes, particularly the magnitude of the subgrid force. This is important because a
larger subgrid force means that the LES model is responsible for more of the dynamics
of the filtered field. To compare subgrid force magnitude (measured a priori ) with
different filters meaningfully, it is normalized by the magnitude of the exact filtered

time derivative. Let M̂
/u̇

denote the normalized squared spectral magnitude of the
subgrid force:

M̂
/u̇

=
〈M̂i(k)M̂∗

i (k)〉〈 ˜∂ûi(k)

∂t

˜∂û∗
i (k)

∂t

〉 . (3.5)

The relative subgrid force magnitude M̂
/u̇

was computed for each filter, and is
shown in figure 5. It is immediately clear that the sharp Fourier-cutoff filter produces
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a smaller subgrid force than any other filter shown here, except for the exponential
filter with γ = 1.1, which has only a marginally smaller subgrid force.

To understand this observation, begin with the Navier–Stokes equations in Fourier
space:

∂

∂t
ûi(k) = −νk2ûi(k) − Pijk(k)

∫
k′

ûj (k
′)ûk(k − k′) dk′, (3.6)

where

Pijk = ikk

(
δij − kikj

k2

)
. (3.7)

In large-eddy simulation, we write a similar equation for the filtered field, which is
then

∂

∂t
(G(k)ûi(k)) = −νk2(G(k)ûi(k))

−Pijk(k)

∫
k′
(G(k′)ûj (k

′))(G(k − k′)ûk(k − k′)) dk′

−Pijk(k)

∫
k′
(G(k) − G(k′)G(k − k′))ûj (k

′)ûk(k − k′) dk′. (3.8)

The first and second terms in this equation have been written so that the original
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structure of the governing equations is preserved; however, the state variable is now
ˆ̃u = G(k)û(k) instead of û(k). The third term in this equation is the subgrid force, so
that

M̂
/u̇

=

〈∣∣∣∣Pαjk(k)

∫
k′
(G(k) − G(k′)G(k − k′))ûj (k

′)ûk(k − k′) dk′
∣∣∣∣2

〉
〈∣∣∣∣ ˜∂ûα(k)

∂t

∣∣∣∣2
〉 (3.9)

is the normalized subgrid force magnitude being measured.
It is clear that the subgrid force can be trivially made zero if G(k) = 1 for all

k. However, in this case, the filter would do nothing, and any simulation would
essentially be a DNS. The filters considered here are all non-invertible, with the
property that G(k) = 0 for k > kc. Still, setting G(k) = 1 for k < kc ensures that the
integrand in (3.9) vanishes for part of the integration region. This suggests, but does
not prove, that the sharp Fourier-cutoff filter should have a smaller relative subgrid
force than the other filters. It is possible to do better than the sharp cutoff filter,

though not with a Gaussian or top-hat filter. It was seen that M̂
/u̇

was slightly smaller
for the exponential filter with γ = 1.1 than for the sharp Fourier-cutoff filter. This

raises the question of what filter shape would minimize M̂
/u̇

. Such an optimization
could be done if we had a full set of quartic statistics (four-point quartic correlations),
but such data are not currently available.
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3.3. Effect of filter shape on estimation differences

It was shown above that the subgrid force is almost always smallest when a sharp
Fourier-cutoff filter is used. This alone suggests that errors will most probably be
smallest for the cutoff filter, since the term to be modelled is smaller. However, it
is possible for a larger model term to in some way be easier to model. To evaluate
this possibility, the a priori estimation differences have also been determined for each
filter shape. In Langford & Moser (1999), the estimation differences were normalized
by the magnitude of the term being estimated (i.e. the subgrid force), which was an
excellent measure of how much of the subgrid force can be captured by the model.
However, this normalization does not allow for a valid comparison of the effects of
different filters because subgrid force magnitude is filter dependent, as seen in § 3.2

A better normalization for the current purposes is

Ê
/u̇

=
〈d̂ i(k)d̂∗

i (k)〉〈 ˜∂ûi(k)

∂t

˜∂û∗
i (k)

∂t

〉 , (3.10)

which shows the expected impact of the estimation difference on the dynamics of the
filtered system. Here, di = Mi − mi is the estimation difference. More importantly, this
measure gives an unbiased indication of the dependence of the difference on the filter
shape. To see this, consider de-filtering the numerator and denominator of (3.10),
by dividing them by G2(k) for k � kc. The value of the ratio is unchanged, but the
denominator is then the projected (i.e. Fourier-cutoff filtered) exact time derivative,
and the numerator can be interpreted as the difference measured in the Fourier-cutoff
filtered equations of the following computational procedure for the nonlinear and
subgrid force terms: (i) apply the invertible shaped filter to the projected velocities,
(ii) compute the nonlinear term and subgrid force model based on the filtered projected
velocity, (iii) de-filter (using the invertible filter) the nonlinear terms and model term

to use in the projected equations. Thus, Ê
/u̇

is an estimation difference measure in a
consistent set of equations (the Fourier-cutoff filtered equations), which indicates the
impact of a graded filter, on the computation of the nonlinear term and subgrid
model.

Ê
/u̇

is plotted for the three filter families considered here in figure 6, for linear esti-
mation models. It is evident that the Gaussian and top-hat filters offer a small
improvement over the cutoff filter for wavenumbers very close to the cutoff, but at
a cost of significantly increased error throughout the remainder of the spectrum.
However, it is near the cutoff that the modelling errors have the largest impact on
the dynamics, so this improvement may be of value in an LES. It is also evident that
the reduced magnitude of the subgrid force for the exponential filter with γ = 1.1 did
not yield a significant improvement in the estimation errors.

3.4. Effect of filter shape on a posteriori error

The results of § § 3.2–3.3 suggest that there is little motivation for the use of graded
filters in addition to a Fourier-cutoff filter. The errors are in most cases larger than
in the Fourier-cutoff case and the burden carried by the model is actually increased
when the Gaussian and top-hat filters are used. However, the Gaussian and top-hat
filters with ∆ =2h have somewhat smaller errors near kc, and the exponential filter
with γ = 1.1 produces a slightly smaller model term. Whether these properties are
important in a simulation can only be determined by performing the simulations.
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Figure 7. Estimation coefficients, (a) L(k) for a linear model (solid) and a quadratic model
(dashed), and (b) Q(k) for various filters.

Both linear and quadratic models were used in simulations using each of the three
filter shapes (∆ =2h and γ = 1.1). The model functions L(k) and Q(k) are shown in
figure 7. Results for simulations using the quadratic model (linear model results are
similar) are shown in figure 8. The spectra from the simulations with graded filters have
been ‘de-filtered’ to allow direct comparison with the DNS and Fourier cutoff spectra.
Note that the spectra from the top-hat and Gaussian filter simulations are in poor
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agreement with the DNS near the filter cutoff. The γ =1.1 exponential filter produces
a better spectrum, but it is slightly inferior to that from the Fourier cutoff simulation.

The results of this section indicate that the use of graded filters in addition to
a Fourier cutoff filter increases the difficulty of modelling the subgrid force. The
magnitude of the model term is generally increased, as is the a priori and a posteriori
error. Of course, we could use a graded filter, and invert the graded component of the
filter before computing the nonlinear terms, and apply the graded filter to the results.
This procedure would recover the Fourier cutoff filter results. In this case, the use of
the graded filter is not harmful, but it is pointless.

As mentioned in § 1.3, other authors have identified a number of reasons to avoid
Fourier cutoff filters in LES, so the question naturally arises as to why it appears
so attractive here. With regard to the lack of guaranteed positivity of the subgrid
stress, the resulting realizability constraints on the model are not used in the optimal
procedure, so this causes no difficulties. Further, it should be noted that none of the
filters considered here (cutoff filters with grading) yield guaranteed positive stresses.
Realizability constraints are generally useful in formulating other models, but this may
still be possible with cutoff filters because it is the conditional average of τij (〈τij |w〉)
that we need to model, and it may still be generally positive with cutoff filters. Other
difficulties associated with cutoff filters arise from Gibbs phenomena (Meneveau &
Katz 2000; Leslie & Quarini 1979), which results in strongly wavenumber-dependent
eddy viscosity and a large convective component of the subgrid term (Eyink 1994),
though this is presumably largely stochastic. While these features may be annoying
in some contexts, they do not affect how well the deterministic subgrid effects can be
modelled, which is what is being assessed here.

One possible reason the Fourier cutoff filter may be particularly good in LES is that
the Fourier coefficients associated with different wavenumbers are uncorrelated. As a
consequence, all quadratic forms, particularly energy and dissipation, are partitioned
between the large and subgrid scales. This and the orthogonality of the Fourier modes,
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limits the ways in which the large scales and subgrid scales defined through a Fourier-
cutoff filter can interact through a quadratic nonlinearity, both instantaneously and
on average. Also, we observed that the cutoff filter yielded smaller-magnitude subgrid
terms, which presumably leaves less to be modelled. The orthogonality of the Fourier
modes makes the Navier–Stokes terms in (1.2) equivalent to the Galerkin projection of
the Navier–Stokes equations into the LES space, which has the property of minimizing
the residual in the projected equation (the subgrid term), which is consistent with
our observations. None of the properties of Fourier cutoff filtering mentioned here
conclusively determines that such filters will be particularly good for LES, but they
do suggest that the good performance of the cutoff filter in the tests used here are
not fortuitous.

4. Effects of model non-locality
Recall that our estimates have been expressed as convolutions of the velocity field

with an estimation kernel L(r). The most obvious way to introduce a locality restric-
tion is to simply require that L(r) = 0 for r > rmax, so that only velocity data at a
distance of up to rmax is included in the estimate. However, for functions for which
the Taylor series has an infinite radius of convergence, such as the cutoff filtered
velocity, information from distances further than rmax manifests itself in the derivatives
at r =0, so the field at a distance can be reconstructed using the local information.
Thus, a local estimate obtained by restricting the region of integration is no different
from a global estimate.

A better way to investigate locality is to consider estimates of the subgrid force
that depend only on velocity at a discrete set of nearby points. To do this, we can
express L(r) as a linear combination of delta functions:

L(r) =

N∑
i=1

αiδ(r − ri). (4.1)

Delta functions have a sifting property, so a convolution of (4.1) with the velocity
field is equivalent to a linear combination of discrete velocity values. We have written
the estimation kernel L(r) as a single function of distance, r , to preserve the spherical
symmetry of the estimation kernel. Thus, the estimation of subgrid force is actually
a linear combination of discrete shell-averaged velocity values, which does not cor-
respond to what we would encounter in a practical LES using finite-volume, finite-
difference or finite-element methods. This rather artificial situation arises because the
spectral representations used here are not a natural context in which to explore issues
of spatial localization of estimates. Several insights can none-the-less be gained in
this idealized setting.

The analogue of (4.1) in Fourier space is

L̂(k) =

N∑
i=0

αi

sin(kri)

kri

. (4.2)

Optimal kernels were computed for two cases: ri = ih, with N = rmax/h so that
ri � rmax; and ri = ih/N , so that ri � h. The resulting kernels in wave space (L̂(k)) are
shown in figures 9–10, for several values of N and rmax. In figure 9(a), it is clear that
as rmax increases, L̂(k) becomes closer to the optimal global model. In figure 10, the
case with four values of ri (N = 3) produces an optimal L̂(k) which is almost the same
as the global model. Yet the model is spatially local, showing that a restriction on
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(N + 1) impulses evenly spaced between 0 and h, for various values of N .

spatial locality does not inherently limit the capability of the model. Clearly, in this
case, by making the ri more closely spaced, we are approaching the situation discussed
above in which the field in the region r < rmax provides the same information as the
entire field. Four points with ri � h were sufficient to reproduce the global model,
suggesting that a completely local model (perhaps at just one point) in which a small
number of derivatives are included in the event data would suffice to produce a good
approximation to the global model.

The most natural way to measure the effects of spatial locality in the current
context is to restrict the spacing of the ri to h, as would be the case in an LES
using non-spectral methods, and to restrict the number of derivatives considered
in the event data, also consistent with practice in practical LES. Derivative event
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estimation coefficient L̂(k) from a localized expansion consisting of impulses spaced evenly at
0, h, 2h, . . . , rmax, for various values of rmax. Event data consist of (a) LES velocities, (b) LES
velocities and the second derivative evaluated only at r = 0.

data at r = 0 is useful because it can replace non-local information through Taylor
series expansion. The effectiveness of low-order derivatives in providing non-local
information is evaluated by including the second derivative of velocity as an event in
the estimation. The models that result when such a procedure is applied, with and
without the second derivative are shown in figure 9(b). It seems that the estimation
kernel L̂(k) for rmax = 2h provides a good approximation to the global model.

To evaluate the importance of the variations of the local models from the global
model, simulations were conducted for the L̂(k) shown in figure 9. A posteriori results
for the three-dimensional energy spectrum, E(k), are shown in figure 11. For each case,
the high-wavenumber portion of E(k) hooks up incorrectly, and the significance of
the discrepancy decreases as non-local event data is added. However, the simulation
results are actually quite good, and the rmax = 2h case with second derivative events is
nearly as good as the global linear estimate shown in figure 2. As locality is restricted,
the estimation kernels L̂(k) change considerably (see figure 9), whereas the simulation
results do not, except for the rmax = 0 case in figure 11(a), which clearly does not
include enough information in the event data.

5. Discussion and conclusions
Through a series of a priori and a posteriori tests in isotropic turbulence, the

performances of optimal LES models have been evaluated in several situations: with
Fourier cutoff filters, with so-called graded filters and with both global and local
dependence of the models. These tests serve to both characterize the performance of
the optimal models and to explore the impact of filter grading and model localization.
The following specific conclusions can be drawn from the results reported here:

(a) The optimal LES models proposed by Langford & Moser (1999) for isotropic
turbulence with Fourier cutoff filters do indeed produce highly accurate large-eddy
simulations, despite the measured r.m.s. difference between the models and the actual
subgrid force being large (approximately 90% of the subgid term) when measured
a priori. This is consistent with many previous observations that LES models often
produce accurate simulations while performing poorly in a priori tests. These results
lend further weight to the conjecture of Langford & Moser (1999) that the large
difference between the model and subgrid force in these models is due to a similarly
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large discrepancy between the ideal (minimum difference) model and the real subgrid
term; that is, that the subgrid force is primarily stochastic. Note that this does not
imply that performance on such a priori tests is irrelevant, only that the target for
the difference between the model and the actual term is not zero, but the minimum
possible, which is attained by the ideal model and which may in fact be large.

(b) The use of graded filters in conjunction with a Fourier cutoff projection does
not appear to be advantageous in LES. The graded filters studied here yield larger
subgrid force terms, so that the model must account for a larger fraction of the
dynamics. Further, when linear and quadratic optimal LES models are used, the
a priori estimation errors are larger than with the cutoff filter, and the Fourier cutoff
filter produces the most accurate a posteriori spectrum. Since the optimal models
used here are quite general, and are optimized for the specific filter being used, these
results suggest that the graded filters will, in general, degrade the modelability of the
subgrid term.

Of course, we can construct models that perform well for graded filters by inverting
the grading (if invertible). Such de-filtering models have been pursued by several
authors (e.g. Domaradzki & Loh 1999; Stolz et al. 2001); see the review by
Domaradzki & Adams (2002). However, de-filtering by itself cannot replace the
information eliminated by the non-invertible projection, so further modelling is still
required. Current results suggest that the filter grading does not help make this
modelling easier.

A significant shortcoming of Fourier cutoff filters is that they are difficult or impos-
sible to implement in general complex geometries, and for this reason other filters
are often more appropriate. The current results simply suggest that when performing
an LES with Fourier spectral methods, adding a graded filter to the implicit Fourier
truncation is probably not helpful.

(c) Optimal LES models are naturally formulated to allow the subgrid force at
any point to depend on the LES field in the entire flow domain. However, this is
apparently not necessary. In the cases studied here, a model that is dependent only on
the LES velocities at discrete distances spaced by one filter width, up to a maximum
distance of just three filter widths is enough to reproduce nearly the global optimal
model results. Further, when dependency on second derivatives is included in the
model dependence, non-locality can be further reduced to two or even one filter
width, depending on the acceptable level of error.

It is interesting to observe the role that optimal LES modelling plays in drawing the
above conclusions. Once the good performance of the optimal models is confirmed
(as above), the optimal models can be used as a surrogate for a wide range of possible
subgrid models. Because the optimal models are optimized for each specific filter and
locality restriction, the results represent the best that is possible using models with
forms subsumed by the optimal model and formulated a priori. By using these general
models rather than a more conventional model (e.g. Smagorinsky), we were able to
obtain results on the impact of filtering and locality on model performance that are
applicable more generally than for one specific model. Thus, the above conclusions
on the inadvisability of graded filters in addition to a Fourier cutoff, and the locality
of model dependence are likely to be applicable to LES in general.

5.1. Toward practical optimal LES

In this paper, we have demonstrated the performance of optimal models constructed
using DNS statistical correlations, and used these models to explore the impact of
filter shape and model locality. Using DNS data in this way allows us to explore the



Optimal large-eddy simulation formulations 293

properties of the models without introducing uncertainties that would be associated
with modelling the statistical input to the optimal models. However, if optimal LES
models are to be useful in actual LES, they must be formulated without appeal
to DNS statistical data. Fortunately, this appears to be possible. For quadratic
estimation models such as those considered here, the small-separation second-, third-
and fourth-order multi-point correlations are needed. Provided the separations are in a
Kolmogorov inertial range and small-scale isotropy can be assumed, the Kolmogorov
scaling theory and the quasi-normal approximation are sufficient to specify most
of the required statistical information. The rest can be obtained using a dynamic
procedure similar to that used in the dynamic model (Germano et al. 1991).

Another prerequisite for optimal models to be useful is that they be formulated
using more generally applicable large-scale representations than the Fourier spectral
representation. The most promising is a finite-volume representation, in which the
state variables are the velocities averaged over discrete volumes. In essence, the filter
is a discretely sampled top-hat. This allows the LES to be formulated in quite general
geometries. Finite-volume optimal LES is currently being developed (Zandonade et al.
2004), and it is being formulated using theoretical statistical information.

Also of concern in practical LES is the computational cost of evaluating the model
terms. In general, this depends on the details of the optimal formulation and its
implementation. For the quadratic models used here and those being used in finite-
volume optimal LES, the cost of evaluating the models is negligible because the
models are of the same form as the terms in the Navier–Stokes equations.
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Lesieur, M. & Métais, O. 1996 New trends in large-eddy simulations of turbulence. Annu. Rev.
Fluid Mech. 28, 45–82.

Lesieur, M. & Rogallo, R. 1989 Large-eddy simulation of passive scalar diffusion in isotropic
turbulence. Phys. Fluids 1, 718–722.

Leslie, D. & Quarini, G. 1979 The application of turbulence theory to the formulation of subgrid
modelling procedures. J. Fluid Mech. 91, 65–91.

Lilly, D. 1992 A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids
4, 633–635.

Liu, S., Meneveau, C. & Katz, J. 1994 On the properties of similarity subgrid-scale models as
deduced from measurements in a turbulent jet. J. Fluid Mech. 275, 83–119.

Meneveau, C. & Katz, J. 2000 Scale-invariance and turbulence models for large-eddy simulation.
Annu. Rev. Fluid Mech. 32, 1–32.

Meneveau, C., Lund, T. & Cabot, W. 1996 A Lagrangian dynamic subgrid-scale model of
turbulence. J. Fluid Mech. 319, 353–385.

Métais, O. & Lesieur, M. 1992 Spectral large-eddy simulation of isotropic and stably stratified
turbulence. J. Fluid Mech. 239, 157.

Pope, S. B. 2000 Turbulent Flows . Cambridge University Press.

Rogallo, R. & Moin, P. 1984 Numerical simulation of turbulent flows. Annu. Rev. Fluid Mech. 16,
99–137.

Smagorinsky, J. 1963 General circulation experiments with the primitive equations. Mon. Weather
Rev. 91, 99–164.

Stolz, S., Adams, N. A. & Kleiser, L. 2001 An approximate deconvolution model for large-eddy
simulation with application to incompressible wall-bounded flows. Phys. Fluids 13, 997–1015.

Vreman, B., Geurts, B. & Kuerten, H. 1994 Realizability conditions for the turbulent stress tensor
in large-eddy simulation. J. Fluid Mech. 278, 351–362.

Winckelmans, G. S., Wray, A. A., Vasilyev, O. V. & Jeanmart, H. 2001 Explicit-filtering large-eddy
simulation using the tensor-diffusivity model supplemented by a dynamic Smagorinsky term.
Phys. Fluids 13, 1385–1403.

Zandonade, P. S., Langford, J. A. & Moser, R. D. 2004 Finite-volume optimal large-eddy
simulation of isotropic turbulence. Phys. Fluids 16, 2255–2271.

Zhou, Y., Hossain, M. & Vahala, G. 1989 A critical look at the use of filters in large eddy
simulations. Phys. Lett. A 139, 330.


